
1

Pseudo-Random Waveforms and Comb CPseudo-Random Waveforms and Comb CPseudo-R alibration Signals
Evans Paschal

9/12/05

This note describes a technique for generating a signal which has a comb spectrum. It contains many harmonics of a given
base frequency, and the amplitudes of all the harmonics are equal. A signal like this is a useful calibration signal when applied
to the input of an amplifi er under test. As long as the amplifi er passes the signal without distortion, we can measure the gain
and frequency response of the amplifi er in one step. That is, since the amplitude and frequency of each component of the input
comb signal is known, by measuring the amplitudes of these components in the output we can fi nd the gain of the amplifi er as
a function of frequency, as shown in Figure 1.

Perhaps the simplest way to generate a comb signal is to use a short repetitive pulse. The pulse repetition frequency f0f0f is the
base frequency of the comb. As long as the width of the pulse is suffi ciently narrow, the amplitudes of the harmonic components
in the waveform at multiples of f0f0f can be made as uniform as desired; that is, the envelope of the comb spectrum can be as fl at as
needed. This approach has a major limitation, however: all the power of the signal is contained in the short pulse; the rest of the
time the waveform is zero. To obtain useful power in each of the comb components a very large pulse must be used, and such a
pulse will be clipped in the amplifi er. Once it’s clipped, it can’t be used to measure amplifi er frequency response.

The approach we’ll follow here is to generate a pseudo-random waveform. This is a signal whose waveform appears to be
random over short intervals, but which is actually deterministic and repeats over a cycle time t0. It has frequency components
at multiples of f0f0f = 1/t0. And the peak to rms ratio of the waveform is low, meaning it is much less likely to be clipped in the
amplifi er.

A pseudo-random waveform, also known as pseudo-random noise, is the output of a psuedo-random binary sequence gen-
erator. This is often implemented as a shift register with feedback as shown in Figure 2.

Figure 1. Using comb signal to measure amplifi er frequency response.

Comb Input

Comb Generator

Frequency Response Output

Amplifi er

Figure 2. Shift register with feedback

clock

a0 a1 a2 an-1 an

feedback network

2

The shift registers are clocked such that, at time p, ai(p(p() = ai-1(p(p(-1). That is, the previous state at ai-1 appears as state ai
after the clock pulse. State a0 at the input to the shift register is some function of states a1, ..., an, or, equivalently, of previous
a0’s, as

The usual feedback is “linear” feedback of the form

where each ci is 0 or 1, depending if state ai is fed back or not, and indicates modulo-2 summation (that is, the XOR func-
tion).

With the proper choice of ci’s we can generate a maximal length sequence, whose sequence length is m = 2n-1, as shown in
Figure 3. Note that an n-stage shift register has a total of 2n different states, but that the all-zero state makes a0 = 0, which gives
the all-zero state again. Only at most 2n-1 other states can be in a sequence. Our design must prevent the shift register from
starting in the all-zero state.

A maximal length shift register sequence has several interesting statistical properties.* For instance, the number of zeros and
ones is nearly equal (in fact, there is always exactly 1 more ones than zeros). There are two runs (of constant value) of length p
for every run of length p+1. And, most important for our use, the autocorrelation function

is two-valued, with a peak at 0 phase (and multiples of the sequence length m) and a very small value elsewhere, as shown in
Figure 4. (Note that we have considered the sequence to take on the values -1 and 1 here, rather than 0 and 1.)

a0(k) = f(a1(k), a2(k), . . . , an(k)) = f(a0(k − 1), a0(k − 2), . . . , a0(k − n)). (1)

a0(k) = c1a1(k) ⊕ c2a2(k) ⊕ · · · ⊕ cnan(k), (2)

⊕

Figure 3. Maximal length shift register sequence

a0(k)

k

sequence length
m = 2n-1

sequence repeats

*For further details, the reader is referred to the defi nitive work: Shift Register Sequences, Solomon W. Golomb, Holden-Day, 1967.

R(i) ≡ 1
m

m−1

k=0

a0(k) ∗ a0(i− k) (3)

Figure 4. Autocorrelation of maximal length sequence

i

m-m
1/m

R(i)1

3

Now consider the output of the shift register as a voltage waveform v(t) as a function of time, as shown in Figure 5. The
shift register is clocked every tc seconds. The waveform v(t) can have two values, either +VpVpV or -VpVpV , and can change only at clock
transitions. The waveform repeats every mtc seconds. The autocorrelation of this waveform is given by Equation 4, where

the operator indicates convolution. is shown in Figure 6.

Note that this is the same as the autocorrelation of a short repetitive pulse, except for the small negative value -VpVpV
2/m. The

power spectrum of the shift register output G(f) is the Fourier transform of the autocorrelation function, asf) is the Fourier transform of the autocorrelation function, asf

where the sinc function is defi ned by . The power spectrum G(f) is zero everywhere except at multiples f) is zero everywhere except at multiples f
of 1/mtc, that is, at harmonics of the sequence repetition rate. If we fi lter the signal around one of these harmonics (including
power at negative as well as positive frequency), we fi nd the rms voltage of the spectral component at a given harmonic frequency
is

where f0f0f = 1/mtc is the sequence repetition rate. The term V(0) is a small dc voltage, which we can ignore (use capacitive cou-V(0) is a small dc voltage, which we can ignore (use capacitive cou-V
pling to the rest of the circuit). The other components are all multiples of the comb frequency f0f0f . (Note: while we know the
rms amplitudes of the comb components, we don’t know their relative phases, which have no simple relationship.)

Figure 5. Shift register output viewed as a voltage waveform

t

mtctc

+VpVpV

-VpVpV

R(τ) = lim
T→∞

1
T

 T/2

−T/2
v(t)v(τ − t)dt

= V 2
p

(1 +

1
m
)Λ(

τ

tc
)− 1

m
Π(

τ

mtc
)

∗

∞

k=−∞
δ(τ − kmtc) (4)

Figure 6. Autocorrelation of shift register output

τ

mtctc

R(τ)
VpVpV

2

-mtc -VpVpV
2/m

∗

R(τ)

R(τ)

G(f) = F{R(τ)}

= V 2
p

(
m + 1
m2

) sinc2(ftc)−
1
m

sinc(fmtc)

·

∞

k=−∞
δ(f − k

mtc
), (5)

sinc(x) ≡ sin(πx)/πx

V (0) = Vp/m, (6)

and V (kf0) = Vp

√
2(m + 1)1/2

m
sinc(k/m), k = 1, 2, . . . , (7)

4

Design Procedure

1. The bandwidth of the amplifi er to calibrate is known. Choose the frequency f0f0f and factor k such that the frequency
comb from f0f0f to kf0 kf0 kf spans the frequency interval of interest. (If a fi ner comb spacing is desired, choose the comb spacing f0f0f and
fi nd integers j and k such that jf0jf0jf to kf0kf0kf spans the interval of interest.) For example, assume we want to measure our amplifi er
response from 100 Hz to 30 kHz. If we chose f0f0f = 100 Hz, then the comb component at 30 kHz will be the 300th component,
or k = 300.

2. Decide how fl at the comb needs to be. The rms voltage of higher-frequency components is proportional to sinc(k/m).
For example, assume we want the 300th component to be down no more than 0.5 dB (0.944) from the fi rst component. We
need sinc(k/m) > 0.944. For k = 300 we fi nd m >= 1613.

3. The sequence length m must be of the form 2n-1. Find the integer n that gives an m greater than the minimum found
in the previous step. (Making n even bigger will, of course, make the comb even fl atter, but at the expense of a greater peak
voltage for a given component rms voltage.) For example, for m >=1613 we fi nd n = 11, giving m = 2047, and sinc(300/m) =
0.965 = -0.31 dB.

4. Calculate the shift register clock frequency fcfcf = mf0mf0mf . For example, 2047x100Hz = 204.700 kHz. This may not be a
convenient frequency. Depending on how much effort we want to go to, we may need to compromise our original specifi cations
and adjust f0f0f to give a better clock frequency.

5. Finally, calculate the rms voltage of each comb component using Equation 7. For example, assume we use the capacitive-
coupled output of a shift register built with 5-volt logic. The output swings from 0 to +5 V, so the ac signal after the capacitor
will swing from -2.5 V to +2.5 V, or VpVpV = 2.5 V. For m = 2047, we fi nd V(100 Hz) = 78.1 mV (and V(30 kHz) = 75.4 mV). We
may need to amplify or attenuate the 2.5 V “square-wave” output of the shift register to get the amplitude we need.

Note the advantage of the pseudo-random comb generator in the example above. If we had generated the comb signal us-
ing a short rectangular pulse, we would have used a pulse 4.89 µs wide (1/mf0mf0mf), repeated every 10 ms. To get the same 78 mV
component amplitude, however, the short pulse would need an amplitude of m1/2

), repeated every 10 ms. To get the same 78 mV
1/2

), repeated every 10 ms. To get the same 78 mV
VpVpV or 113 V! Our amplifi er would need an

additional 33 dB of headroom to pass this pulse without distortion. The problem with a short pulse, of course, is that all the
energy of the signal is contained in the pulse, whereas the pseudo-random waveform spreads the energy out and is always run-
ning at constant power. In terms of the peak voltage required for a given component amplitude, the pseudo-random waveform
is the optimum solution.

Sample Designs

Figures 7 and 8 show two comb fi lter designs that are currently used at fi eld stations for calibrating ELF and VLF receivers.
The circuit in Figure 7 is used in the Noise Survey project receivers (Tony Fraser-Smith’s experiment). The comb generator is
implemented in 4000-series CMOS logic running from a 15-volt supply. Three 4015 4-stage shift registers are wired in series to
give a 12-bit shift register; only the fi rst 11 bits are used (m = 2047). Note that the feedback logic here uses XNOR (inverting
XOR) logic. This works because, while we’re loading the inverse feedback into the shift register, and thus looking at the Q-bar
outputs instead of the Q outputs, the XOR of two Q-bar outputs gives the same result as the XOR of two Q outputs. We’re really
generating the inverse of the sequence. In this design, the all-ones state is the state to be avoided. This is accomplished by using
the 4015 reset inputs to be sure the shift register starts off in the all-zeros state. The clock frequency required is synthesized using
a divide-by-m counter and a phase-locked-loop referenced to an external standard. Since this circuit is designed to calibrate ELF
as well as VLF receivers, with the ELF comb going as low as 10 Hz, dc coupling is used for the comb signal. The Disable Offset
input to the low-pass fi lter compensates for the dc offset while the shift register is held off in its all-zeros state.

Figure 8 shows the comb calibrator in the new HAIL2 preamps currently being deployed by Stanford. In this circuit the
pseudo-random sequence is generated by a PIC12F629 microprocessor. The microprocessor generates the maximum length
sequence of a 10-stage shift register (m = 1023). With a crystal oscillator input of fxfxf = 8.192 MHz, the internal microprocessor
clock runs at fxfxf /4 = 2.048 MHz. The cycle time for the shift register is 8 microprocessor instructions, so the virtual shift register
clock is fcfcf = fxfxf /32 = 256 kHz. With a sequence length of m = 1023, the comb components are spaced every 250.244 Hz, and
the spectral envelope is down by 0.22 dB at 32 kHz. The desired comb spacing was f0f0f = 250.000 Hz. This would have required
a crystal oscillator frequency of 8.184 MHz. This is not available in an off-the-shelf oscillator, so the closest available frequency
was used. Rather than using XOR (or XNOR) feedback of the register contents to determine the next input bit to the shift
register, the program in the microprocessor tests the shift register output and, if zero, XORs the feedback value into the register
(broadside, as it were). We can think of this as running the circuit in Figure 2 in time-reversed order.

5

Figure 7. Comb generator using 15-volt 4000-series CMOS logic.

6

Figure 8. Comb generator implemented with a microprocessor.

7

Appendix 1: Program to List Maximal-Length Sequence Feedback Taps

The following C language program lists all XOR feedback taps that give maximal-length shift register sequences for n = 3 to
nmax (nominally 16). The (edited) output of this program is listed in Appendix 2.

/*PRSeqList.cpp
*
* Pseudo-random shift-register sequence feedback list program
* E. Paschal
* 2/19/04
*
* This program is used to list feedback taps for shift registers which
* give maximal-length sequences using XOR feedback. The program lists
* all feedback taps for shift register lengths from 3 to nmax.
*/

#include <stdio.h>

/* Global variables */
int nmax; /* maximum shift-register length, 3 to 31 */
int n; /* current shift-register length */
unsigned long regist; /* shift register, up to 31 bits */
unsigned long feedbk; /* feedback taps */
unsigned long rmask; /* register mask, 0s except n 1s on right end */
unsigned long m; /* (2**n)-1 = maximal length (= rmask) */
unsigned long mp1; /* 2**n */
unsigned long count; /* shift counter */
unsigned long soluts; /* number of maximal-length solutions */
FILE *listfile;

int main()
{
 listfile = fopen(“Seqlist.txt”,”a”);
 nmax = 16; /* don’t make it too big unless you have
 a fast machine. must be 31 or less */
 for (n = 3; n <= nmax; n++) { /* do next sequence length */

int i; /* loop counters */
rmask = 0;
for (i = 0; i < n; i++) {
 rmask = (rmask << 1) + 1; /* shift in n 1s to mask */
}
m = rmask; /* 2**n -1 */
mp1 = m + 1; /* 2**n */
soluts = 0; /* reset solution count for this n */
printf(“Registers n = %d, Sequence length m = %d\n”,n,m);
fprintf(listfile,”Registers n = %d, Sequence length m = %d\n”,n,m);

 /* test all possible feedbk’s */
 /* first feedback mask is ‘1000..000’ */

for (feedbk = m/2; feedbk < mp1-1; feedbk++) {
 regist = 0; /* start with register clear */
 for (count = 1; count <= mp1; count++) {/* shift till back to 0 */

 unsigned long regtemp;
 int bitct;
 int j;
 regtemp = regist & feedbk; /* mask feedback bits */
 bitct = 0;
 for (j = 0; j < n; j++) { /* count masked bits set */
 if (regtemp & 1) bitct++;
 regtemp = regtemp >> 1;
 }
 regist = regist << 1; /* shift register left */
 /* shift in a 1 if even feedback bits */
 if ((bitct & 1) == 0) regist++;
 regist = regist & rmask; /* mask to n bits */
 if (regist == 0) break; /* done when we’re back to 0 */

 }
 if (count == m) {

 soluts++;
 printf (“Feedback %6x = “,feedbk);
 fprintf (listfile,”Feedback %6x = “,feedbk);
 regist = feedbk;
 for (i = 0; i < n; i++) {
 regist = regist << 1;
 printf (“%1x”,(mp1 & regist) >> n);
 fprintf (listfile,”%1x”,(mp1 & regist) >> n);
 }
 printf (“\n”);
 fprintf (listfile,”\n”);

 }
}
printf(“Number of maximal-length solutions = %d\n\n”,soluts);
fprintf(listfile,”Number of maximal-length solutions = %d\n\n”,soluts);

 }
 return(0);
}

8

Registers n = 3, Length m = 7
Feedback 5 = 101
Feedback 6 = 110
Number of solutions = 2

Registers n = 4, Length m = 15
Feedback 9 = 1001
Feedback c = 1100
Number of solutions = 2

Registers n = 5, Length m = 31
Feedback 12 = 10010
Feedback 14 = 10100
Feedback 17 = 10111
Feedback 1b = 11011
Feedback 1d = 11101
Feedback 1e = 11110
Number of solutions = 6

Registers n = 6, Length m = 63
Feedback 21 = 100001
Feedback 2d = 101101
Feedback 30 = 110000
Feedback 33 = 110011
Feedback 36 = 110110
Feedback 39 = 111001
Number of solutions = 6

Registers n = 7, Length m = 127
Feedback 41 = 1000001
Feedback 44 = 1000100
Feedback 47 = 1000111
Feedback 48 = 1001000
Feedback 4e = 1001110
Feedback 53 = 1010011
Feedback 55 = 1010101
Feedback 5c = 1011100
Feedback 5f = 1011111
Feedback 60 = 1100000
Feedback 65 = 1100101
Feedback 69 = 1101001
Feedback 6a = 1101010
Feedback 72 = 1110010
Feedback 77 = 1110111
Feedback 78 = 1111000
Feedback 7b = 1111011
Feedback 7e = 1111110
Number of solutions = 18

Registers n = 8, Length m = 255
Feedback 8e = 10001110
Feedback 95 = 10010101
Feedback 96 = 10010110
Feedback a6 = 10100110
Feedback af = 10101111
Feedback b1 = 10110001
Feedback b2 = 10110010
Feedback b4 = 10110100
Feedback b8 = 10111000
Feedback c3 = 11000011
Feedback c6 = 11000110
Feedback d4 = 11010100
Feedback e1 = 11100001
Feedback e7 = 11100111
Feedback f3 = 11110011
Feedback fa = 11111010
Number of solutions = 16

Registers n = 9, Length m = 511
Feedback 108 = 100001000

Feedback 10d = 100001101
Feedback 110 = 100010000
Feedback 116 = 100010110
Feedback 119 = 100011001
Feedback 12c = 100101100
Feedback 12f = 100101111
Feedback 134 = 100110100
Feedback 137 = 100110111
Feedback 13b = 100111011

...

Feedback 1da = 111011010
Feedback 1dc = 111011100
Feedback 1e3 = 111100011
Feedback 1e5 = 111100101
Feedback 1e6 = 111100110
Feedback 1ea = 111101010
Feedback 1ec = 111101100
Feedback 1f1 = 111110001
Feedback 1f4 = 111110100
Feedback 1fd = 111111101
Number of solutions = 48

Registers n = 10, Length m = 1023
Feedback 204 = 1000000100
Feedback 20d = 1000001101
Feedback 213 = 1000010011
Feedback 216 = 1000010110
Feedback 232 = 1000110010
Feedback 237 = 1000110111
Feedback 240 = 1001000000
Feedback 245 = 1001000101
Feedback 262 = 1001100010
Feedback 26b = 1001101011

...
Feedback 3aa = 1110101010
Feedback 3ac = 1110101100
Feedback 3b1 = 1110110001
Feedback 3be = 1110111110
Feedback 3c6 = 1111000110
Feedback 3c9 = 1111001001
Feedback 3d8 = 1111011000
Feedback 3ed = 1111101101
Feedback 3f9 = 1111111001
Feedback 3fc = 1111111100
Number of solutions = 60

Registers n = 11, Length m = 2047
Feedback 402 = 10000000010
Feedback 40b = 10000001011
Feedback 415 = 10000010101
Feedback 416 = 10000010110
Feedback 423 = 10000100011
Feedback 431 = 10000110001
Feedback 432 = 10000110010
Feedback 438 = 10000111000
Feedback 43d = 10000111101
Feedback 446 = 10001000110

...
Feedback 7c8 = 11111001000
Feedback 7cb = 11111001011
Feedback 7cd = 11111001101
Feedback 7d3 = 11111010011
Feedback 7d6 = 11111010110
Feedback 7da = 11111011010
Feedback 7e6 = 11111100110
Feedback 7e9 = 11111101001
Feedback 7f2 = 11111110010
Feedback 7f4 = 11111110100
Number of solutions = 176

Appendix 2: Partial Listing of Maximal-Length Sequence Feedback Taps

This listing shows feedback taps that will give maximal-length pseudo-random sequences for shift registers from 3 to 16 bits
long. For instance, the feedback used in the comb generator in Figure 7 (bits a2 and a11) is shown below in bold as the fi rst entry
in the table for n = 11. Note that for many shift register lengths it is possible to generate a maximal-length sequence using only
two feedback taps. However, for lengths n = 8, 12, 13, 14, and 16, four taps must be used.

9

Registers n = 12, Length m = 4095
Feedback 829 = 100000101001
Feedback 834 = 100000110100
Feedback 83d = 100000111101
Feedback 83e = 100000111110
Feedback 84c = 100001001100
Feedback 868 = 100001101000
Feedback 875 = 100001110101
Feedback 883 = 100010000011
Feedback 88f = 100010001111
Feedback 891 = 100010010001

...
Feedback f47 = 111101000111
Feedback f71 = 111101110001
Feedback f88 = 111110001000
Feedback f8d = 111110001101
Feedback f93 = 111110010011
Feedback fb8 = 111110111000
Feedback fcc = 111111001100
Feedback fdd = 111111011101
Feedback fde = 111111011110
Feedback fe4 = 111111100100
Number of solutions = 144

Registers n = 13, Length m = 8191
Feedback 100d = 1000000001101
Feedback 1013 = 1000000010011
Feedback 101a = 1000000011010
Feedback 1029 = 1000000101001
Feedback 1032 = 1000000110010
Feedback 1037 = 1000000110111
Feedback 1045 = 1000001000101
Feedback 1046 = 1000001000110
Feedback 104f = 1000001001111
Feedback 1052 = 1000001010010

...
Feedback 1fab = 1111110101011
Feedback 1fb0 = 1111110110000
Feedback 1fc1 = 1111111000001
Feedback 1fc4 = 1111111000100
Feedback 1fc8 = 1111111001000
Feedback 1fd5 = 1111111010101
Feedback 1fda = 1111111011010
Feedback 1ff1 = 1111111110001
Feedback 1ffb = 1111111111011
Feedback 1ffe = 1111111111110
Number of solutions = 630

Registers n = 14, Length m = 16383
Feedback 2015 = 10000000010101
Feedback 201c = 10000000011100
Feedback 2029 = 10000000101001
Feedback 202f = 10000000101111
Feedback 203d = 10000000111101
Feedback 2054 = 10000001010100
Feedback 2057 = 10000001010111
Feedback 205d = 10000001011101
Feedback 205e = 10000001011110
Feedback 2067 = 10000001100111

...
Feedback 3f9f = 11111110011111
Feedback 3fa6 = 11111110100110
Feedback 3faa = 11111110101010
Feedback 3fb8 = 11111110111000
Feedback 3fc5 = 11111111000101
Feedback 3fc6 = 11111111000110
Feedback 3fcf = 11111111001111
Feedback 3fe2 = 11111111100010
Feedback 3fe8 = 11111111101000
Feedback 3ff3 = 11111111110011
Number of solutions = 756

Registers n = 15, Length m = 32767
Feedback 4001 = 100000000000001
Feedback 4008 = 100000000001000
Feedback 400b = 100000000001011
Feedback 4016 = 100000000010110
Feedback 401a = 100000000011010
Feedback 402f = 100000000101111
Feedback 403b = 100000000111011
Feedback 4040 = 100000001000000
Feedback 4043 = 100000001000011
Feedback 4049 = 100000001001001

...
Feedback 7fb0 = 111111110110000
Feedback 7fb9 = 111111110111001
Feedback 7fbf = 111111110111111
Feedback 7fc8 = 111111111001000
Feedback 7fd9 = 111111111011001
Feedback 7fe3 = 111111111100011
Feedback 7fec = 111111111101100
Feedback 7ff4 = 111111111110100
Feedback 7ff7 = 111111111110111
Feedback 7ffe = 111111111111110
Number of solutions = 1800

Registers n = 16, Length m = 65535
Feedback 8016 = 1000000000010110
Feedback 801c = 1000000000011100
Feedback 801f = 1000000000011111
Feedback 8029 = 1000000000101001
Feedback 805e = 1000000001011110
Feedback 806b = 1000000001101011
Feedback 8097 = 1000000010010111
Feedback 809e = 1000000010011110
Feedback 80a7 = 1000000010100111
Feedback 80ae = 1000000010101110

...
Feedback ff41 = 1111111101000001
Feedback ff74 = 1111111101110100
Feedback ff82 = 1111111110000010
Feedback ff99 = 1111111110011001
Feedback ff9a = 1111111110011010
Feedback ff9c = 1111111110011100
Feedback ffb8 = 1111111110111000
Feedback ffd2 = 1111111111010010
Feedback fff5 = 1111111111110101
Feedback fff6 = 1111111111110110
Number of solutions = 2048

